Sediment management and reservoir flushing in Austria

Gabriele Harb
Sediment management in reservoirs

- Deposition control
- Removal of deposited sediments - desilting
- Compensation of reservoir silting

Quelle: Batuca & Jordaan, Silting and Desilting of Reservoirs, 2000; modified
Sediment management in reservoirs

Deposition control

Conservation measures in the catchment area

Reduction of the sediment inflow rate

Reduction of sediment deposition

Soil conservation:
- non-structural measures: vegetative practice, ..
- structural measures: diversion canals for agriculture, ...
- Sediment trapping reservoirs
- River regulation works
- Slope and bank protection works
- Bypassing structures
- Off-stream reservoirs

- Sediment sluicing
- Turbidity currents venting

Gabriele Harb (Graz University of Technology)
Sediment management in reservoirs

Removal of deposited sediments - desilting

Hydraulic removals
- Flushing
- Sediment Syphoning
- Slottet Pipe Sediment Sluicer

Mechanical removals
- Dredging
- Excavation
Reduction of sediment inflow rate

- Bank and slope protection works
- River regulation works
- Groynes and/or guidewalls
- Energy dissipating structures
- Sediment trapping structures
- Sediment bypass

(Morris und Fan 1998)
Hydraulic Removal - Flushing

- min. discharge approx. 50%-70% of the 1-year-flood
- Rainfall-runoff-forecast of the catchment
- Lowering of the water level at the weir:
 - Begin at the raising part of the flood wave to prevent an increase of the flood risk downstream
- Flushing process with observation of:
 - Suspended load concentration
 - Runoff-forecast of the discharge
 - Interruption in case of too high concentration rates
- Closing of the gates according to available discharge
Mechanical Removal

- **Dry dredging**
 Advantages: economical, short duration of work, equipment available
 Disadvantages: restricted to low-flow period (especially in winter), partial filling necessary, greater adverse ecological impact

- **Wet dredging**
 Advantages: continuous evacuation at top water level, less adverse ecological impact, flexible timing possible
 Disadvantages: higher costs, longer duration of work, special equipment required

- **Suction dredging**
 Advantages: continuous evacuation at top water level, less adverse ecological impact, independent timing
 Disadvantages: higher costs, special equipment needed, intermediate storage and drainage facilities required
Mechanical Removal

- **Redistribution in the river**
 reservoir: shallow-water or/and ecological zones, limited downstream: in case of longer free flow stretches

- **Utilization**
 construction material (concrete)
 fill material

- **Dumping ground**
 dumping ground necessary, transport, environment, costs
Sediment management in reservoirs

- Adding of new sluicing facilities
- Changing of the operation management

Compensation of reservoir silting

Reorganisation of operation

Raising the dam

New reservoir

Gabriele Harb (Graz University of Technology)
Basic information for decision

- Kind and geometry of the reservoir, HPP and the river downstream?
- Hydrological parameters?
- Grain-size-distribution in the reservoir and in the river?
- Deposition rates, bed load and suspended load fractions?
- Necessary duration of the measures?
- Contamination of the sediments?
- Volume concentration of sediments in case of normal operation and flood events?

AIM: Rehabilitation of the sediment balance and sediment connectivity in the river

Selecting or combination of measures!
Basic information for decision

- Kölnbrein
- Pernegg-Zlatten/Mur
- Schütt/Gail
- Mürzzuschlag/Mürz
- Bodendorf/Mur
- Ybbs-Persenbeug/Danube

Gabriele Harb (Graz University of Technology)
PILOT CASE - SEE HYDROPOWER

Gabriele Harb (Graz University of Technology)
Hydropower Plant Leoben

The total volume of the reservoir is 0.36 mil m³.
• Hydropower generation -9.9 MW
• Fish pass (minimum) – 0.3 m³/s
• Annual sedimentation rate of 5.5%
The hydropower generation is the only use.
Status Quo

No flushing since the start of operation due to regulations
Difference in the storage volume between 06.2010 u. 03.2006:
77.339 m³ (5% annual sedimentation rate)

Mur

Mean annual discharge (MQ): 79.76 m³/s lt. Government of Styria
design discharge: 150 m³/s
1-year flood: 335 m³/s
5-year flood: 510 m³/s
10-year flood: 580 m³/s
30-year flood: 750 m³/s
100-year flood: 930 m³/s

Gabriele Harb (Graz University of Technology)
Geometrie Telemac2D

45,000 triangle elements with 2.5m edge length
conversation of the natural break lines
Profil weir

Gabriele Harb (Graz University of Technology)
Additional input data for flood risk analysis
Flow field 100-year flood
Sediment transport 100-year flood

0 Days 00:00:00
Flood risk 100-year flood (930m³/s)

Gabriele Harb (Graz University of Technology)
Flood risk 100-year flood (930m3/s)
Bed shear stress 1-year flood

water level at maximum operation level

water level 1.8m lowered
Evaluation of the flushing impact

<table>
<thead>
<tr>
<th>before flushing</th>
<th>during flushing</th>
<th>after flushing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphology in the reservoir/tailwater/downstream</td>
<td>Oxygen concentration</td>
<td>Photo documentation</td>
</tr>
<tr>
<td>Photo documentation</td>
<td>Sediment concentration</td>
<td>Fish population in the reservoir and downstream</td>
</tr>
<tr>
<td>Sediment concentration</td>
<td></td>
<td>Macrobenthos</td>
</tr>
<tr>
<td>Fish population in the reservoir and downstream</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish population in a reference stretch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrobenthos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoustic sounding of the river bed</td>
<td></td>
<td>Acoustic sounding of the river bed</td>
</tr>
<tr>
<td>Grain-size-distribution in the reservoir</td>
<td></td>
<td>Grain-size-distribution in the reservoir</td>
</tr>
<tr>
<td>Oxygen conditions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gabriele Harb (Graz University of Technology)
Reference project Alpreserv

<table>
<thead>
<tr>
<th></th>
<th>Year 0</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flushing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring (April-Mai)</td>
<td>--</td>
<td>>61/100 m³/s</td>
<td>>61/100 m³/s</td>
<td>>69/123 m³/s</td>
<td></td>
</tr>
<tr>
<td>Early Summer (Juni-Juli)</td>
<td>>61/100 m³/s</td>
<td>>61/100 m³/s</td>
<td>>69/123 m³/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Late Summer (Aug.-Sept.)</td>
<td>>61/100 m³/s</td>
<td>>61/100 m³/s</td>
<td>>69/123 m³/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Opening</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Broader Time Window</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>100/230 m³/s, throughout the entire year</td>
</tr>
</tbody>
</table>

The flow is related to start of lowering the reservoir / start of total opening.

Further adaptation to ecological and water management parameters

Gabriele Harb (Graz University of Technology)
DI Gabriele Harb

Institut für Wasserbau und Wasserwirtschaft

Technische Universität Graz

Stremayrgasse 10

8010 Graz, Österreich

gabriele.harb@tugraz.at